
Torus breakdown and noise-induced dynamics in the randomly driven Morse oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 125102

(http://iopscience.iop.org/1751-8121/43/12/125102)

Download details:

IP Address: 171.66.16.157

The article was downloaded on 03/06/2010 at 08:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/12
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 125102 (13pp) doi:10.1088/1751-8113/43/12/125102

Torus breakdown and noise-induced dynamics in the
randomly driven Morse oscillator

Chunbiao Gan1, Qingyun Wang2 and Matjaž Perc3
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Abstract
Strictly, the KAM torus no longer exists for a randomly driven Hamiltonian
system. We firstly investigate the process of torus breakdown in the randomly
driven Morse oscillator by transforming the original system into another one in
action-angle variables and introducing the specific Poincaré map by Makarov
et al. Though the strength of random perturbations is large, some thick closed-
like curves can still appear. To characterize these noisy dynamics, the pseudo-
periodic surrogate approach, along with the algorithm on the mean divergence,
is applied to evaluate the correlation dimensions of the original data and their
corresponding surrogates. Two kinds of noisy dynamics are picked out from
the randomly driven Morse oscillator.

PACS number: 05.45.+b

1. Introduction

In Hamiltonian systems, regular motions, i.e. motions on various KAM tori, are fundamental
[1, 2]. From the KAM theory, a set of invariant closed curve can survive with positive
Lebesgue measure if the strength of perturbation is sufficiently small. The surviving invariant
closed curves are filled with dense irrational orbits [3, 4]. In hyperbolic chaotic scattering,
all the periodic orbits are unstable and there are no KAM tori in the phase space. However,
nonhyperbolic deterministic systems are endowed with mixed phase space partitioned into
stable and unstable regions, and KAM tori coexist with other chaotic sets [5, 6], which
typically results in algebraic decay in the survival probability of a particle in the scattering
region due to the stickness effect of KAM tori [2].

A physically important issue in the study of nonlinear dynamics is to understand
how robust a phenomenon is against perturbations or deviations between the underlying
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mathematical model and physical reality. As studied in [7], weak dissipation can have a
metamorphic consequence on nonhyperbolic chaotic scattering in the sense that the physically
important particle-decay law is altered, no matter how small the amount of dissipation. If
a system is subjected to a random force, the problem of finding an exact solution of the
equations of motion is often replaced by the problem of finding the respective probability
density function in phase space. In [8], Dykman et al discussed activated escape from a
metastable state of a system driven by a time-periodic force, and a closed-form explicit
expression for the escape rate of an overdamped Brownian particle was presented and shown
to be in quantitative agreement with simulations. In addition, they also described experiments
on a Brownian particle optically trapped in a double-well potential, and showed that a suitable
periodic modulation of the optical intensity could break the spatio-temporal symmetry of an
otherwise spatially symmetric system. In [9], Makarov et al investigated the phenomena
of torus breakdown in the Morse oscillator driven by a band-limited Gaussian white noise,
and discussed the domains of finite-time stability in phase space by introducing an excellent
specific Poincaré map. It was shown that the lifetime of stable domains significantly exceeded
the correlation time of the external force.

In past decades, randomly perturbed or noise-induced dynamics were discussed by the
statistical method and averaging principle [10], the stochastic sensitivity function [11], the
stochastic Melnikov method [12–14], the random perturbation of Poincaré map [15], etc, and
several quantitive methods are combined to identify the noisy dynamics in [16, 17]. In this
study, the randomly driven Morse oscillator is further illustrated to explore the phenomenon
of torus breakdown and identify noisy dynamics. This paper is organized as follows. In
section 2, the Morse oscillator driven by the bounded noise is firstly transformed into another
form in action-angle variables, and a specific Poincaré map is then set up to investigate
the phenomenon of torus breakdown. Section 3 firstly introduces some relevant numerical
algorithms, such as the leading Lyapunov exponent for small data sets, the pseudo-periodic
surrogate (PPS) method, etc, to identify noisy dynamics. We then present some numerical
tests on the noisy quasi-periodic and noise-induced chaotic time series by the forth-mentioned
algorithms. In the final section, we summarize and discuss results of this work.

2. Torus breakdown due to random perturbations

The vibrational motion of diatomic molecules can be described by the Morse oscillator, and it
is frequently used in theoretical chemistry to describe the photodissociation of molecules [18].
In [9], the authors presented a specific Poincaré map for this randomly driven oscillator based
on the condition of finite-time invariance and the fact that the respective random function has
a certain value at any given moment of time.

Here, the Morse oscillator is assumed to be perturbed by a multiplicative bounded noise
and written as {

ẋ = y

ẏ = e−2x − e−x + ε e−xξ(t)
(1)

where ε is a small nonnegative parameter, and ξ(t) is the bounded noise [19], i.e.

ξ(t) = cos[�t + σB(t) + γ ] (2)

where � and σ are constants, B(t) is a unit Wiener process and γ is a random variable
uniformly distributed in the interval [0, 2π). The two-sided spectral density of ξ(t) is given
by

Sξ (ω) = 1

2π

[
σ 2

4(ω − �)2 + σ 4
+

σ 2

4(ω + �)2 + σ 4

]
. (3)
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The shape of the spectral density is determined by the � and σ values. In general, it has two
symmetrical peaks, symmetrically located in the positive and negative frequency domains;
their bandwidth depends on σ , and their locations depend on � and, to a less degree, and
also on σ . When �/σ 2 � 1, ξ(t) becomes a narrow-band random process, while in the limit
as σ approaches infinity, the random process becomes a ‘white noise’ of constant spectral
density [19].

From [20], each physical realization of ξ(t) can be approximated by

η(t) ≈
N∑

k=1

A cos(ωkt + ψk), N → ∞, (4)

where A = √
2Sξ�ω, {ωk|k = 1, 2, . . . , N} are independent and nonnegative random

variables over the interval [ωl, ωr ], �ω (=(ωr − ωl)/N ) is a frequency increment, {ψk|k =
1, 2, . . . , N} are identically uniformly distributed over the interval [0, 2π) and N is a fixed
positive integer. For crucial aspects on this approximate description, e.g. the minimal number
N in equation (4), see [20]. For a large positive integer N (see section 3), the physical realization
generated by equation (4) is almost ergodic, and numerical results show that the influence of
this large integer can be neglected. Since the duration of time is not concerned with the sum
in equation (4), a specific Poincaré map can then be set up as in [9].

When ε = 0 in system (1), (∞, 0) is a hyperbolic fixed point connected to itself by a
homoclinic orbit. By introducing the McGehee transformation x = −2 log u, y = v, and
reparametrizing time as ds/dt = −u/2, we can find that (0,0) is the hyperbolic fixed point
connected to itself by a homoclinic orbit. The Hamiltonian for system (1) is given by

H = H0 + εH1(t) = 1
2 [y2 + (e−x − 1)2] + ε e−xξ(t). (5)

Prior to the construction of the specific Poincaré map, the action I(=I (x, y)) and angle θ

(=θ(x, y)) variables are introduced by the following formulas [21]:

I = 1

2π

∮
y dx, θ = ∂

∂I

∫ x

x ′
y dx (6)

where x′ is a coordinate of one of the turning points, and y can be found from a constant
Hamiltonian H(x, y) = const. When ε = 0, the solutions of system (1) can be expressed as

x0(I, θ) = ln
1 − √

1 − �2 cosθ

�2
, y0(I, θ) = �

√
1 − �2 sinθ

1 − √
1 − �2 cosθ

(7)

in terms of the action-angle variables, where � ≡ �(I) = 1 − I .
From equation (7), we can obtain the inverse relationship (I, θ) = (I (x0, y0), θ(x0, y0)),

and the Hamiltonian given by equation (5) is then rewritten as

H = I − I 2

2
+ ε

(1 − I )2

1 −
√

1 − (1 − I )2 cos θ
ξ(t). (8)

System (1) is now transformed into the following one:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dI

dt
= −∂H

∂θ
= ε�2

√
1 − �2sinθ

[1 − √
1 − �2cosθ ]2

ξ(t)

dθ

dt
= ∂H

∂I
= ω̄ + ε

{
−2�[1 −

√
1 − �2cosθ ] − �3

√
1 − �2

cosθ

}
ξ(t)

[1 − √
1 − �2cosθ ]2

(9)

where ω̄ is the circular frequency of the unperturbed motion of system (1) and � = 1 − I .
For a periodically driven deterministic system, the existence of compact sets issues

immediately from the KAM theory. However, the KAM theory cannot be directly applied

3
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to Hamiltonian systems under random perturbations. Although each individual realization of
a random process can be treated as a deterministic function (see equation (4)), the resonant
values between the unperturbed and perturbed motions are densely distributed in phase space,
and there is no non-destroyed invariant curve or KAM torus. In view of the stability theory,
all motions of a random system are unstable in the limit t → ∞, which makes a deterministic
description of long-term dynamics senseless.

According to the time-limited invariability of a randomly perturbed dynamical system, it
holds that any motion initiating from some set in a phase space returns to the set after a finite
time without mixing. Thus, within this time interval any such ensemble of trajectories is stable
according to Lyapunov [9]. So, we can study the complicated dynamics by an individual
physical realization of ξ(t) within some finite time interval, say [0, T0], and repetitively
investigate the results from the periodical signals consisting of identical pieces of η(t) with
the same duration T0, i.e.

η̄(t + nT0) ≡ η(t), t ∈ [0, T0], (10)

where n is an integer. From definition (10), the randomly perturbed dynamical system (1) is
replaced by a periodically driven one, and we can observe the resonant effect of each physical
realization on the unperturbed motions with different periods by choosing different T0.

A specific Poincaré map is now constructed by the following basic rule: the values of the
system’s parameters, calculated at the ith step of mapping, become the initial conditions for
the next step. It is defined as

Pε : �φ0 → �φ0

(Iε(0), θε(0)) → (Iε(T0), θε(T0))
(11)

where �φ0 = {(I, θ, φ)|φ = φ0} is a global cross-section. The nth iteration of the above map
is given by

P n
ε : �φ0 → �φ0

(Iε(0), θε(0)) → (Iε(nT0), θε(nT0)).
(12)

From equation (9), various values of T0 in equation (10) may be chosen to observe different
effects on tori by this specific Poincaré map (11) or (12). For the different initial action I0, ω0

can be calculated from the relationship

ω = T (H)

2π
= ∂H

∂I
= 1 − I, (13)

while the initial angle θ0 can be fixed, say π/4 or other.
Each physical realization is generated by equation (4). In this study, we set � = 1,

ωl = 0.002π,ωr = 2π,N = 20 000, unless otherwise indicated. Each orbit of
equation (9) is integrated over 2000 mapping periods with period T0 by the well-known
fourth-order Runge–Kutta method. For the different initial action I0 and the fixed initial angle
θ0 = π/4, we integrate equation (9) and record the values of the angles I and θ every sampling
period T0, and the quantities

Ix = I cos θ/Is, Iy = I sin θ/Is (14)

can then be drawn in a figure to observe the phenomenon of torus breakdown when the system
is randomly perturbed, where Is is the most accessible action corresponding to the separatrix
H = 0.5 and is equal to 1. Since the topology of map (11) is similar for all physical realizations
of ξ(t) as shown in [9], we only represent a typical set of maps from an individual realization
in figures 1 and 2 with different T0 to observe the resonant effects of the bounded noise on
the system’s various motions. Though the system is driven by the bounded noise, some thick
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(a) 

(c) (d ) 

(b) 

Figure 1. Torus breakdown in system (9) under random perturbation, where T0 = 10.

closed-like curves can be observed clearly in each case (figures 1(a), (c) and 2(a), (c)), even
for larger ε (figures 1(b), (d) and 2(b), (d)). Moreover, for different T0 and σ , the topologies of
map (11) are apparently distinguishable, which means that the effects of noise with different
spectral width are different for various motions.

In [22], Arnold considered a time-dependent Hamiltonian system with two degrees of
freedom, and proved that the system had an orbit which connected two different regions. In
figures 1 and 2, we also observe such diffusive behaviors in the Morse system. However, since
the perturbation in our case is a random force, theoretical analysis is difficult to perform at the
present time, and thus there is considerable work to be done to investigate this more precisely.

3. Characterization of noise-induced dynamics

Without noisy perturbation, the dynamics of the Morse oscillator can be identified easily from
the traditional dynamical theory. However, an irregular time series cannot be simply said to
be chaotic when the system is randomly driven. If the strength of random perturbation is very
large, then the so-called random-dominant responses will appear [16, 23]. To identify the
noisy dynamics of system (1), we first introduce several numerical algorithms.
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(a) (b) 

(c) (d ) 

Figure 2. Torus breakdown in system (9) under random perturbation, where T0 = 50.

The sensitive dependence of response on initial conditions can be quantified by the
Lyapunov exponent, which characterizes the average exponential rate of divergence or
convergence of nearby orbits in phase space of a system and quantifies the strength of chaos.
As pointed out by Kantz and Schreiber [24], the algorithm by Wolf et al [25] is not very
robust for random dynamics. In spite of Wolf’s algorithm only using a delay reconstruction
of phase space, there is another class of algorithms which also involves the approximation
of the underlying deterministic dynamics. Here, Rosenstein’s approach [26] is employed to
compute the leading Lyapunov exponent to identify noisy dynamics. Though the output data
are affected by noise, the influence from noise can be minimized by employing averaging
statistics from this approach.

The first step of Rosenstein’s method involves reconstructing the attractor dynamics from
a single time series. The reconstructed trajectory, X, is expressed as a matrix where each row
is a phase-space vector, i.e. X = (X1, X2, . . . , XM)T. For a K-point time series, say {x1, . . . ,
xK}, each Xi is given by Xi = (xi, xi+J, . . . , xi+(m−1)J), where J is the lag or reconstruction delay
and m is the embedding dimension. Thus, X is an M × m matrix, and the constants m, M, J
and K are related as M = K − (m − 1)J.

The basic algorithm for the computation of the response’s leading Lyapunov exponent is
listed as follows [26]:

6
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(i) Solve system (1) by using the fourth-order Runge–Kutta method and the triangle series
approximation (4), and record the time series x(t) versus t.

(ii) Estimate the time lag and mean period of the sample time series from step (i) by using
the FFT, e.g. using the median frequency of the magnitude spectrum.

(iii) Reconstruct attractor dynamics using the method of delays. The embedding dimension
is usually estimated in accordance with Taken’s theorem [27], i.e. m > 2l, where l is the
number of degrees of freedom of the system. A method used to choose the lag via the
correlation sum was addressed by Liebert and Schuster [28].

(iv) Find nearest neighbors and constrain temporal separation. The nearest neighbor Xj ′ is
found by searching for the point that minimizes the distance to the particular reference
point Xj , i.e. dj (0) = minXj ′ ‖Xj − Xj ′ ‖, where dj (0) is the initial distance from the j th
point to its nearest neighbor, and ‖·‖ denotes the Euclidean norm. Here, an additional
constraint is required, i.e. |j − j ′| > mean period.

(v) The leading Lyapunov exponent is estimated by

λ1(i) = 1

i�t

1

(M − i)

M−i∑
j=1

ln
dj (i)

dj (0)
(15)

where �t is the sampling period of the time series, and dj (i) is the distance between the
j th pair of the nearest neighbors after i discrete time steps, i.e. i�t seconds.

(vi) The final result for the leading Lyapunov exponent is calculated using a least-squares fit
to the average line defined byy(i) = 〈ln(dj (i)〉/�t , where 〈·〉 denotes the average of all
values of j . As pointed out by Rosenstein [26], the process of averaging is the key to
calculate accurate values of λ1 by using small and noisy data sets.

In [29, 30], the method of surrogate data was used by Small et al to test pseudo-periodic
time series data and detect determinism in time series with dynamical noise contamination.
This method can provide a rigorous way to apply statistical hypothesis testing to experimental
time series. By the pseudo-periodic surrogate (PPS) algorithm, chaotic and noisy periodic
time series were distinguished from the experimental data for the Rösslersystem and human
EGG [29].

The algorithm by Theiler et al [31] tests only for independent noise, linear noise or
statically filtered linear noise, while the PPS algorithm presented by Small et al [29, 30]
can generate surrogates that preserve coarse deterministic features (such as periodic trends)
but destroy fine structures (such as deterministic chaos). The PPS method can be applied
to differentiate between chaos with dynamic noise and a noisy periodic orbit, and the basic
algorithm for the PPS method presented in [29, 30] is performed according to the following
steps:

(i) Reconstruct the attractor dynamics from an individual time series as described in the
simulation process for the leading exponent and record the reconstructed attractor as A =
{Xk | k = 1,2, . . . , K − (m − 1)J}, in which Xk = [xk, xk+J, . . . , xk+(m−1)J].

(ii) Choose an initial condition S1 ∈ A at random and let i = 1.
(iii) Choose a near neighbor Zj ∈ A of Si according to the probability distribution

Pr ob(Zj = Zk) ∝ exp{(−‖Zk − Si‖)/ρ}, where the parameter ρ is called the noise
radius.

(iv) Let Si+1 = Zj+1 be the successor to Si and make increment i. If i < K , go to step (iii).
(v) The surrogate time series is recorded as {(Sk)1} ≡ {(S1)1, (S2)1, (S3)1, . . . , (SN)1}, i.e.

the scalar first components of {Sk}k .
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Figure 3. Noisy quasi-periodic response. The top panel shows the original data from system (1)
for (a) time history and (b) phase portrait, where ε = 0.01, σ = 1. Also shown in (c) is the mean
divergence with the embedding dimension m = 5 and reconstruction delay J = 31. Comparisons
of the correlation dimensions for the original time series and surrogate data are presented in (d),
where ρ = 0.0001 is the thick real line and the thin scatter lines represent the results from the
original and the surrogate data, respectively. In this noisy quasi-periodic case, there is no distinction
between the original data and surrogates.

In the above algorithm, the noise radius ρ can be selected such that the expected number
of sequences of length 2 or more that are identical for data and surrogates is maximized
[29]. This selection criterion of noise radius can provide a balance between (a) too much
randomization (few identical sequences of length; and (b) too little (data and surrogate near
identical).

In figures 3–6, we use the same physical realization as in figures 1 and 2 to solve the
original system (1) with various initial conditions under random perturbation with different
strength and spectral width. The initial condition (x(0), y(0)) is chosen according to the
results shown in figures 1 and 2, and relationship (7) is also used, where θ = π/4 is fixed.
Two initial points of (I, θ), lying on or far away from some thick closed-like curve in figures 1
and 2, are chosen as (0.1, π/4) and (0.53, π/4), and correspondingly, two initial points of
(x, y) are (−0.16, 0.39) and (0.53, 0.78) from equation (7). The sample responses evolving
from the first initial value (−0.16, 0.39) are shown in figures 3 and 4 with different spectral
width for the random perturbation, while the sample responses evolving from the second one
are presented in figures 5 and 6.
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Figure 4. Noisy quasi-periodic response. The top panel shows the original data from system (1)
for (a) time history and (b) phase portrait, where ε = 0.01, σ = 10. Also shown in (c) is the mean
divergence with the embedding dimension m = 5 and reconstruction delay J = 31. Comparisons
of the correlation dimensions for the original time series and surrogate data are presented in (d),
where ρ = 0.0001 is the thick real line and the thin scatter lines represent the results from the
original and the surrogate data, respectively. In this noisy quasi-periodic case, there is also no
distinction between the original data and surrogates.

The parameters ‘t’, ‘x(t)’ and ‘y(t)’ in figures 3–6 mean the dynamical evolving time in
seconds, the displacement in meters and the velocity in meters per second, respectively. Here,
the leading Lyapunov exponent of each sample response can be evaluated by the least-squares
fit from the mean divergence 〈ln(Divergence)〉 versus t curve in figures 3–6(c). An obvious
linear slope means that the response is a chaotic one. In addition, it deserves to notify that
the values of the leading Lyapunov exponents, i.e. the slopes of the obvious linear regions
in the first segments of mean divergence curves, are not accurately calculated; our main goal
in the current work is just to show non-chaotic and chaotic responses in the randomly driven
system.

For the quasi-periodic signals contaminated with the bounded noise (figures 3 and 4(a),
(b)), the original data and surrogates are indistinguishable, where the correlation dimensions
are estimated according to the algorithm by Judd [32] for each original time series and
50 PPS data sets. The algorithm described in [32] estimates the correlation dimension dc as
a function of the viewing scale ε0, so dc for each time series is not a single number, but a
curve. In these cases, the null hypothesis of a quasi-periodic orbit with uncorrelated noise

9
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Figure 5. Noise-induced chaotic response. The top panel shows the original data from system (1)
for (a) time history and (b) phase portrait, where ε = 0.01, σ = 1. Also shown in (c) is the mean
divergence with the embedding dimension m = 5 and reconstruction delay J = 31. Comparisons
of the correlation dimensions for the original time series and surrogate data are presented in (d),
where ρ = 0.0005 is the thick real line and the thin scatter lines represent the results from the
original and the surrogate data, respectively. In this noise-induced chaotic case, the data and
surrogates are clearly distinguishable.

cannot be rejected, see figures 3 and 4(d). This means that quasi-periodic nature dominates
the dynamical response though it is contaminated with the dynamical noise. These results are
consistent with the thick closed-like curves in figures 1 and 2 and what the leading Lyapunov
exponents predicted (see figures 3 and 4(c)), from which we can observe that the slopes of the
curves are almost flat and the leading Lyapunov exponent is nearly zero.

For the noisy time series shown in figures 5 and 6, the original signals and their
corresponding surrogates are clearly distinct when the viewing scale ε0 tends to zero, and
in these cases the null hypothesis of a quasi-periodic orbit with correlated noise should be
rejected. From figures 5 and 6(c), apparent finite inclines appear in the first segments of the
mean divergence curves, which means that the leading Lyapunov exponents are positive and
finite, and chaotic nature dominates both the noisy time series. Since both the chaotic orbits
arise from the random perturbation, we call them the noise-induced chaotic responses.

From figures 3 and 4, the noisy quasi-periodic time series can be easily picked out from
other noise-contaminated dynamics of the system. However, for the noise-induced chaotic ones
shown in figures 5 and 6, other measures, such as the time history and the leading Lyapunov
exponent, etc, should be complemented for a proper description of the data’s dynamical nature.
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Figure 6. Noise-induced chaotic response. The top panel shows the original data from system (1)
for (a) time history and (b) phase portrait, where ε = 0.01, σ = 10. Also shown in (c) is the mean
divergence with the embedding dimension m = 5 and reconstruction delay J = 31. Comparisons
of the correlation dimensions for the original time series and surrogate data are presented in (d),
where ρ = 0.0005 is the thick real line and the thin scatter lines represent the results from the
original and the surrogate data, respectively. In this noise-induced chaotic case, the data and
surrogates are also clearly distinguishable.

For stronger random perturbation, the so-called random-dominant dynamics [16, 23] can arise
in the system, and are not discussed here.

4. Summary and discussion

A torus in a conservative Hamiltonian system can survive under deterministic perturbation
from the KAM theory or be broken down. Hyperbolic dynamics in Hamiltonian systems are
typically structural stable while nonhyperbolic dynamics are not. From previous studies on
random dynamics, the effect of weak random perturbation on a system’s hyperbolic stable
trajectory is trivial. Besides, when a random perturbation is imposed on a conservative
Hamiltonian system, all responses seem irregular, especially for nonhyperbolic dynamics and
stronger perturbation. In this case, we cannot simply recognize an arbitrary irregular motion
as a chaotic one.

Here, the randomly driven Morse oscillator is employed as an illustrating example. For
other conservative Hamiltonian systems, similar analysis can be performed. From previous
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heuristic results, a specific Poincaré map is developed for the system in the form of action-
angle variables and the sampling period for this map is discussed in section 2, where each
physical realization of the given bounded noise process is approximated by the triangle series
method. For this specific Poincaré map, various sampling periods can be chosen as required
to observe the resonant effects of noises on the unperturbed motions. Here, we choose two
sampling periods and change the spectral width of the bounded noise process to observe
the resonant effects of the bounded noise process on the system’s various motions and the
phenomena of torus breakdown. It is shown that many thick closed-like curves still survive
under weak random perturbation, while most original invariant tori will be broken down for
stronger random perturbation. For various sampling periods, the topologies of the Poincaré
map are apparently different.

Based on the instructive analysis in section 2, several quantitive algorithms are developed
to identify the noisy dynamics in this system. Thick closed-like curves mean that the sample
responses randomly walk within a narrow band of the original quasi-periodic trajectories. The
corresponding responses are called the noisy quasi-periodic ones, which are validated by the
leading Lyapunov exponents and the PPS method. However, there is no closed-like curve for
the noise-induced chaotic response. Since the deterministic chaotic scattering is nonhyperbolic
for the Morse oscillator, the point sets in Poincaré’s global cross-section seem to be different
for various chaotic responses, which is not the same as in the hyperbolic case. When this kind
of noisy dynamics occurs, the PPS algorithm and the leading Lyapunov exponent play pivotal
roles in its identification.

If the random perturbation becomes very strong, then there will appear the so-called
random-dominant responses in the system. Our future studies will be focused on different
resonant effects of random perturbation on various periodic or quasi-periodic motions, by
choosing different sampling periods and increasing the strength of random perturbation, to
explore more complex noisy dynamics.
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